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Abstract: Interpreting the way that the SU(3) bare lattice coupling runs with the lattice

spacing is complicated by the fact that there is a smooth cross-over region in which the

strong coupling expansion transforms into a weak-coupling one. For N ≥ 5, however, there

is a first order bulk transition that cleanly separates the strong and weak coupling regimes.

We find that in this case the calculated string tension can be readily fitted throughout the

weak coupling region by a standard 3-loop expression modified by lattice spacing corrections

of the expected form. While our fits demand the presence of the latter, they do not constrain

the perturbative coupling scheme enough to enable us to extract a usefully accurate value

of a(β) in units of ΛMS . To resolve this ambiguity we turn to SU(3) where we use the

Schrodinger Functional coupling scheme to extract a value of r0ΛSF as a benchmark. We

then find that the Parisi mean-field improved coupling scheme closely reproduces this

result. We also develop a comparison between different schemes that does not rely on the

calculation of any physical quantity and which can therefore be applied much further into

weak coupling. Again the Parisi scheme is favoured over the others that we compare. Using

the mean-field scheme we have fitted the values of the string tension a2σ that have been

calculated for 2 ≤ N ≤ 8, to obtain ΛMS/
√

σ = 0.503(2)(40) + 0.33(3)(3)/N2 for N ≥ 3,

where the first error is statistical and the second is our estimate of the systematic error

from all sources.
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1. Introduction

Consider SU(N) gauge theories discretised onto a hypercubic lattice of spacing a, on a

4-torus, with SU(N) matrices, Ul, assigned to the links l, and with the standard Wilson

plaquette action. The partition function is

Z =

∫

∏

l

dUl exp

{

−β
∑

p

{

1 − 1

N
ReTrUp

}

}

(1.1)

where Up is the ordered product of the SU(N) matrices around the boundary of the pla-

quette p. (Although we shall be using the plaquette action in this paper, a parallel analysis

could be carried out for any other lattice action.) The parameter β in the lattice parti-

tion function is proportional to the inverse lattice bare coupling. This defines a running

coupling on the length scale a, in what is often called the lattice scheme:

β =
2N

g2
L(a)

. (1.2)

In practice one frequently wishes to compare physical quantities that have been cal-

culated over a similar range of β, but not at precisely the same values. For example the

Sommer parameter r0 [1] or the deconfining temperature Tc [2] in terms of the confining

string tension σ. One then needs to interpolate such quantities to common values of β.

It is well-known that simple perturbative interpolations will not fit the calculated values.

Thus one is typically reduced to using, for example, interpolating polynomials [3] that

bear no relationship to the weak-coupling expansion, or, if one tries to use a power series
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in g2
L ∝ 1/β, one finds that the higher order fitted terms have large coefficients of oscillat-

ing signs, so that if one extrapolates further into weak coupling, the values diverge away

from the expected 3 loop form until truly asymptotic values of the scale 1/a [4]. This is,

of course, a symptom of the well-known fact that in the range where one currently per-

forms calculations, no plausibly simple perturbative expression for g2
L(a) even begins to

be adequate. This is unfortunate because it means that one cannot exploit dimensional

transmutation in a simple way, to transform the value of the lattice bare coupling to a

statement of how large the lattice spacing a is in units of the corresponding Λ parameter,

which can then be expressed in terms of, say, ΛMS in the theoretically and experimentally

well-studied MS coupling scheme. (See [5] and [6] for recent reviews.)

This old problem has been approached both by stressing the need for improved lattice

coupling schemes [7, 8] and the need for lattice spacing corrections [9]. Determining what

is important is, however, rendered ambiguous by the fact that there is a smooth cross-over

between strong and weak-coupling in SU(3), so one does not really know from which value

of β it is appropriate to attempt a weak-coupling expansion in powers of g2 and a.

In this paper we use the fact that for SU(N ≥ 5) there is a first order ‘bulk’ transi-

tion [10] separating the weak and strong coupling ranges, to remove the ambiguity of where

one might expect a weak coupling expansion to be applicable. This enables us to quantify

the importance of retaining O(a2) lattice corrections in addition to the usual continuum

perturbative variation.

While our SU(6) and SU(8) calculations prove accurate enough to establish the need

for O(a2) corrections in the relationship between a and g2(a), the range in a is not large

enough to usefully constrain the coupling scheme and hence the value of aΛMS . In fact

experimental studies are not accurate enough either. (See for example figure10 in [11].)

Fortunately there exists in SU(3) an accurate calculation of the running coupling in the

‘Schrodinger functional’ (SF) scheme that covers an energy range comparable to that of

experiment, i.e. up to ∼ MZ , and with appreciably smaller errors [12, 13]. We shall use this

scheme to obtain from the values of a/r0 calculated in [3, 14] the continuum value of r0ΛSF

and hence of r0ΛMS . We compare this to what one obtains with some improved coupling

extrapolations, and find that the Parisi mean-field improved coupling scheme [7] closely

matches the SF result. We simultaneously perform a comparison with the SF scheme that

does not involve the calculation of any physical quantity and therefore can be carried out

to much weaker coupling. This also points to the ‘goodness’ of the mean-field scheme.

Motivated by this we use this scheme for N 6= 3 to obtain continuum values for ΛMS/
√

σ

for all N , and in particular for N → ∞.

In the next section we discuss the weak coupling behaviour of a on g2(a) in more

detail, and establish our notation. We then move on to our calculations and then attempt

to quantify the systematic errors on our final results. We end with a brief summary and

our conclusions.

An abbreviated version of this work has been presented at Lattice 2007 [16]. This

study forms part of a more detailed and extensive analysis that will appear elsewhere [17].
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2. The lattice running coupling

Ideally we would wish to be able to determine from the value of g2
L(a) ≡ 2N/β what is the

lattice spacing a as expressed in units of the corresponding physical scale ΛL (which can

then be converted into a more familiar scale, such as ΛMS , using a one-loop calculation [18]).

Although we know this to be possible in principle (dimensional transmutation) in practice

doing so for the SU(3) gauge theory (and QCD) has proved notoriously ambiguous, despite

the fact that we know the β-function in the lattice scheme to 3 loops [19]. There are some

plausible reasons for this which will become apparent in the following discussion.

To establish how g2
L(a) is related to a we determine how a varies with g2

L(a). To do

this we express a in units of some physical mass µ that we calculate in lattice units, i.e.

as aµ(a). Now we know that different choices for the quantity µ will have different lattice

spacing corrections:
aµ′(a)

aµ(a)
=

µ′(0)

µ(0)

(

1 + cσa2σ(a) + O(a4)
)

(2.1)

where we have chosen to use the string tension σ to set the scale of these corrections. As an

example, the ratio m0++/
√

σ, where m0++ is the lightest scalar glueball mass, has cσ ∼ 2

to 3 depending on N , while Tc/
√

σ, where Tc is the deconfining temperature, has cσ ∼ 1/3.

Thus it is clear that the variation of aµ(a) with g2
L(a) must include a dependence on a

that has the functional form shown in eq. (2.1), in addition to the variation expected for

a running coupling in the continuum theory. Generically we should expect cσ = O(1) as

illustrated by the examples just quoted. There is a similar dependence that follows from

the fact that the β-function for g2
L(a) will have lattice spacing corrections

∂g2
L

∂ log a2
= β0g

4
L + β1g

6
L + βL

2 g8
L + · · · + O(a2). (2.2)

Here the βi are the coefficients of the continuum β-function; β0 and β1 are scheme-

independent while βL
2 requires a 2-loop calculation relating g2

L to a coupling for which

β2 is already known [19]. Thus, as has been emphasised in [9], the dependence of a on

g2
L(a) will need to incorporate such lattice spacing corrections in addition to the perturba-

tive expression that one obtains in the continuum. Using the string tension σ for our scale

this leads to

a
√

σ(a) =

√
σ(0)

Λs

(

1 + cs
σa2σ + O(a4)

)

e
−

1

2β0g2
s

(

β1

β2
0

+
1

β0g2
s

)

β1
2β2

0

×e
−

βs
2

2β2
0

g2
s+

„

β1βs
2

2β3
0
−

βs
3

4β2
0

«

g4
s+O(g6

s)
(2.3)

where we make explicit the quantities that depend on the coupling scheme s being used

(here s = L). We use the standard definition of the Λ parameter, where the constant term

in the expansion of 1/g2(a) is absorbed into the scale of the logarithm. In eq. (2.3) the

terms that involve only β0 and β1 constitute the exact 2-loop continuum result. (That is

to say, it is the exact result when βj≥2 = 0.) For higher orders we are not aware of any

such neat closed form in terms of elementary functions, so we present their contribution
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as a power series in g2. Note also that although the coefficient cs
σ is a power series in g2

s ,

we shall, following usual practice, treat it as a constant in our fits, since g2
s does not vary

very much in the region where the O(a2) correction is significant. Finally we remark that

we could introduce the lattice corrections in different ways. A small change would be to

use, say, the mass gap mG rather than the string tension σ to set the scale for the O(a2)

corrections in eq. (2.3). A more radical change would be to substitute for each occurence

of a2σ on the r.h.s. of eq. (2.3) the expression provided by eq. (2.3) itself. After iteration

this would transform the lattice spacing corrections from a power series in a2σ into a power

series in the perturbative factor in eq. (2.3). All such variations are à priori equally valid.

In addition to these lattice spacing corrections, a further complication is that the

gL(a) coupling scheme is expected to have large higher order perturbative corrections.

This follows from the large ratio between ΛL and ΛMS [18]:

ΛMS

ΛL

= 38.853 exp

{

− 3π2

11N2

}

(2.4)

This implies that in the relationship between the two couplings, g2
MS

= g2
L(1+γg2

L+O(g4
L)),

the coefficient γ must also be large, since one can easily see that ΛMS/ΛL = exp(γ/2β0).

So if g2
MS

is a ‘good’ scheme with modest higher order terms in the β-function, which is

something we shall assume from now on (see [20]), this will almost certainly not be the

case for g2
L. This is confirmed by explicit calculation of the three-loop coefficient [19] where

one finds

βL
2

N→∞≃ 6.9βMS
2 (2.5)

Since we only know the β-function to 3 loops, it would be wise to seek a lattice coupling

scheme where there is less reason to expect large higher order corrections. This problem has

of course been appreciated for a long time and there have been extensive efforts to improve

the lattice coupling (for a review see [8].) Perhaps the simplest and oldest suggestion is

the ‘mean-field’ improved coupling of Parisi [7]

1

g2
I

=
1

g2
L

〈

1

N
TrUp

〉

≡ up

g2
L

(2.6)

which has a nice physical motivation as the effective coupling experienced by a background

field (in a simple approximation) [7]. Since the expansion of 〈TrUp〉 in g2
L is known to

3-loops [21] we can substitute

1

g2
I

=
1

g2
L

〈

1

N
TrUp

〉

=
1

g2
L

(

1 − ω1g
2
L − ω2g

4
L − ω3g

6
L + O(g8

L)
)

(2.7)

into the 3-loop β-function for g2
L to obtain the 3-loop β-function for g2

I , giving

βI
2 = βL

2 + β0ω2 − β1ω1
N→∞≃ 2.3βMS

2 (2.8)

which indeed promises smaller higher-order corrections than eq. (2.5). Similarly one finds

ΛMS

ΛI

=
ΛL

ΛI

ΛMS

ΛL

= exp

{

ω1

2β0

}

× 38.853 exp

{

− 3π2

11N2

}

≃ 2.633 (2.9)
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β = 2N
g2

a
√

σ

6.565.5

1.2

0.8

0.4

0

Figure 1: The SU(3) string tension versus the inverse lattice coupling, including the region of the

crossover between strong and weak coupling.

using eq. (2.4) and ω1 = (N2 − 1)/8N , which again indicates that the mean-field improved

coupling scheme is a ‘good’ one. Motivated by this we shall focus on this coupling scheme,

and some variations thereof, in our later calculations.

Although the need to improve the lattice coupling has long been recognised, the sug-

gestion [9] that O(a2) lattice corrections are also needed has in practice been more con-

troversial. As demonstrated above, there can be no question about the presence of such

corrections. But one might question their importance. How plausible is this? As remarked

above, we expect that generically cσ = O(1) in eq. (2.3), and since a
√

σ(a) and other

masses are typically calculated to a precision ≪ 1%, we would need a2σ ≪ 0.01 for the

O(a2) correction to be negligible. In SU(3), for example, a2σ ≃ 0.01 at β = 6.5. This

coupling region is at the upper edge of the range in which useful calculations are usually

performed. Thus generically we should expect O(a2) corrections to be important in cur-

rent calculations. Of course it might have been that the coefficient cσ just happened to be

unexpectedly small, but the calculations in this paper will show that this is not the case.

Eq. (2.3) is only valid in weak coupling. This is as true of the lattice corrections as of the
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β = 2N
g2

a
√

σ

46454443

1.2

0.8

0.4

0

Figure 2: The SU(8) string tension versus the inverse lattice coupling, including the region of the

first order ‘bulk’ transition between strong and weak coupling. Values ◦ are obtained coming from

strong coupling, while the values • are obtained coming from weak coupling.

perturbative factor. In strong coupling the appropriate relationship is a very different one,

a2σ
g2

L
→∞
= − log

1

g2
L

+
∑

n=0

cn

(

1

g2
L

)n

. (2.10)

(See [22] for a detailed review.) A problem that now arises for small N , and in particu-

lar for SU(3), is that there is a smooth cross-over between the strong and weak coupling

regimes, with a mid-point that occurs close to the value of β where one typically starts to

calculate interesting physical quantities. This is illustrated in figure 1 where we show how

a
√

σ varies with β for SU(3). The point of inflection, around β ∈ [5.50, 5.60], provides an

estimate of the mid-point of the cross-over. Clearly there must be some range of β beyond

that where the functional form is still not pure weak coupling, but a priori we do not know

how far that range extends. This complication disappears for N ≥ 5 where the strong-weak

coupling transition becomes a first order phase transition. This is illustrated in figure 2

for SU(8). Here we see a large hysteresis indicating a strong first order transition. The

simultaneous large jump in the average plaquette, and hence action, shows this to be a

‘bulk’ transition where the physics changes on all length scales. It is reasonable to expect

– 6 –
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that on the weak-coupling side of this bulk transition there are no strong-coupling artifacts.

We shall take advantage of this feature by first testing our weak-coupling fit in eq. (2.3) to

the values of a
√

σ obtained on the whole weak coupling branch of the SU(8) theory, and

then decreasing N to N = 3 (and N = 2) having established in the much less ambiguous

large-N case what kind of fit is needed.

Our assumption that there are no strong-coupling artifacts on the weak-coupling side

of the ‘bulk’ transition is not only plausible but is supported by analytic calculations in a

related but simpler context: SU(N) lattice gauge theories in 1 + 1 dimensions. Here (with

the plaquette action) there is a strong-weak coupling cross-over at finite N that becomes

a third-order phase transition at N = ∞ [30]. In this limit one can calculate the string

tension as a function of β analytically [30] and one finds a simple expansion in powers of

1/β with no strong-coupling artifacts anywhere on the weak-coupling branch. While this

does not prove that the same will be true in the case of D = 3+1, it provides an additional

argument that such artifacts will be either absent or highly suppressed.

An interesting question concerns the functional form, for N ≤ 4, in the extended

cross-over region where the strong coupling expansion gradually transforms into a weak-

coupling one. We can obtain some intuition from the D = 1 + 1 case where the whole

problem reduces to a single SU(N) integral [30]. In particular, for SU(2) the running of

the coupling becomes quite elementary,

up = exp{−a2σ} =

∫ 1
−1 dzz(1 − z2)

1
2 exp (βz)

∫ 1
−1 dz(1 − z2)

1
2 exp (βz)

(2.11)

and one can analyse the behaviour in the cross-over region. We note that the terms in

eq. (2.11) are obtained by applying ∂/∂β(1 − ∂2/∂β2)
1
2 or (1 − ∂2/∂β2)

1
2 to

∫ 1

−1
dz exp (βz) =

1

β

(

eβ − e−β
)

. (2.12)

So on the weak coupling side we will have, in addition to the expected weak coupling

expansion in powers of 1/β, a correction term that is an expansion in powers of e−2β ,

whose coefficients are themselves series in powers of 1/β. It is these exponential terms

that are our strong-coupling artifacts. They arise from the compact integration range of

the plaquette in eq. (2.11), and this general origin suggests that they will be present in

some form in higher dimensions. This is most convincing for the average plaquette, where

such O(e−2β) corrections would create serious complications for the standard methods of

extracting the gluon condensate in D = 3 + 1 since they (and their larger-N homologues)

would dominate over the O(a4) condensate contribution. We note the close connection of

these corrections to ‘ZN vortex-instantons’ in D = 1+1. In D = 2+1 these will generalise

to ZN ‘monopole-instantons’ and in D = 3 + 1 to ZN ‘monopoles’, as well as ZN vortex

lines and sheets. Such ultraviolet fluctuations will disorder small Wilson loops, and will

affect the string tension in strong coupling. Around the cross-over one might expect some

complicated contribution that is the ratio of powers and exponentials in β. While it is

not easy to be precise about this, it is clear that the functional form suggested by our

– 7 –
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a
√

σ

g2
I(a)N

0.50.40.30.20.10

6.5

5.5

4.5

3.5

Figure 3: The (mean-field improved) bare ‘t Hooft coupling as a function ot the scale in units of

the calculated string tension, for N = 2 (△), N = 3 (◦), N = 4 (∗), N = 6 (�), and N = 8 (•).

D = 1 + 1 example is very different to anything one might imagine on the basis of weak

coupling arguments, and it will be no surprise if we find that at small N we have to go

further into weak coupling to be able to apply standard weak coupling fits.

Of course, using SU(N) gauge theories at larger N to teach us something about SU(3)

is only convincing if it is clear that SU(3) is ‘close to’ SU(∞). That this is so in the context

of the bare coupling was demonstrated in figure7 of [10] using calculations for 2 ≤ N ≤ 5.

Here we repeat the exercise with calculations that not only go to larger N , but also to

smaller values of a at smaller N . So, for each value of β at which we calculate the string

tension (see section 3.1) we extract the bare mean-field improved ‘t Hooft coupling g2
I (a)N

using eq. (2.6). We then plot it against the length scale a on which it is running, with a

expressed in units of the string tension. Since the physics has a smooth large-N limit, this

is a common unit up to corrections of O(1/N2) which we expect to be modest, since this

is what one finds for various mass ratios [10].

The resulting plot is shown in figure 3. This provides convincing evidence that the

weak-coupling running of the bare coupling is in fact very similar for all values of N . Thus

it makes sense to extract lessons in this context from larger N for all SU(N) gauge theories.
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SU(2)

β L aml up

2.1768 8 1.990(64) 0.56122

2.2400 8 1.380(16) 0.58286

2.2986 10 1.240(13) 0.60180

2.3715 12 0.9071(94) 0.62272

2.3726 12 0.9088(63) 0.62302

2.4265 16 0.8470(68) 0.63632

2.5115 20 0.5728(54) 0.65421

2.5500 20 0.4363(40) 0.66137

2.6000 24 0.3778(44) 0.67001

2.7000 32 0.2688(30) 0.68557

Table 1: The mass, aml, of a closed flux loop of length L, and the average plaquette, up, at the

indicated values of β in SU(2).

3. The calculation

3.1 String tensions and r0

The string tensions used in this paper have been obtained from calculations of the ground

state energies of confining flux loops wrapped around a spatial torus. We use the results

of [23] supplemented in many cases by either higher statistics at the same values of β or

new calculations at both higher and lower values of β. In tables 1–5 we list these masses,

aml, together with the length, L, of the flux loop in each case, and the average plaquette,

up, which will be needed for transforming to the mean-field coupling scheme.

To extract the string tension we use

aml(L) = a2σL − π

3L
. (3.1)

The linear term has been corrected by the universal string correction [24] with a coefficient

that corresponds to a bosonic string theory (the universality class of the Nambu-Goto

string). That this is in fact the appropriate universality class for the confining flux tube in

D=3+1 non-Abelian gauge theories, has received support from many lattice calculations in

both SU(2) and SU(3) (see for example [25]) as well as at larger N [26]. The string lengths

in tables 1–5 have been chosen to be large enough, aL
√

σ ≥ 3, that the string correction

in eq. (3.1) provides only a ∼ 5% shift in the calculated value of a
√

σ, so higher order

corrections in 1/a2σ (the natural expansion parameter in the relationship between aml(L)

and a2σ) should be very small indeed. We shall estimate the systematic error that this

brings about below.

In the case of SU(3), the calculated values of the Sommer parameter, r0, extend con-

siderably further into weak coupling than the string tension. For this reason we will sup-

plement our fits of a
√

σ with those of a/r0, as listed in table 6. These have been taken from

table 2.6 of [14] where, for the values at higher β, we have translated from rc to r0 using

– 9 –
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SU(3)

β L aml up

5.6500 8 1.425(25) 0.53750

5.6750 8 1.249(15) 0.54366

5.6925 8 1.130(12) 0.54756

5.6993 8 1.106(11) 0.54896

5.7995 10 0.8860(79) 0.56755

5.8000 10 0.8766(86) 0.56764

5.8945 12 0.7283(67) 0.58111

6.0625 16 0.5408(46) 0.60034

6.2000 20 0.4465(32) 0.61362

6.3380 24 0.3588(29) 0.62560

6.5150 32 0.2943(35) 0.63948

Table 2: As in table 1 but for SU(3).

SU(4)

β L aml up

10.480 8 1.348(15) 0.5253

10.500 8 1.234(13) 0.52920

10.550 8 0.9878(87) 0.53732

10.590 10 1.1296(94) 0.54259

10.635 10 0.9587(105) 0.54764

10.637 10 0.9541(43) 0.54789

10.700 10 0.7789(90) 0.55408

10.789 12 0.7885(56) 0.56169

10.870 12 0.6456(72) 0.56793

11.085 16 0.5663(54) 0.58239

11.400 20 0.0044(44) 0.60044

Table 3: As in table 1 but for SU(4).

eq. (2.73) therein. (We note from figure2.4 of [14] that the quoted error on the conversion

factor appears to encompass any possible dependence on a.) We remark that the lower β

values are from [3] and the higher values from [15].

We have calculated the values of the action listed in table 6. These calculations have

been performed on 84 lattices and will therefore differ slightly from the large volume limit.

However we have checked, performing a calculation on 64 lattices for the values of β in

table 2, that these minute finite volume corrections to the action, lead to errors that are

negligible compared to the relevant statistical errors.
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SU(6)

β L aml up

24.300 8 1.246(14) 0.51721

24.350 8 1.077(11) 0.52254

24.425 10 1.210(12) 0.52810

24.500 10 1.063(12) 0.53258

24.515 10 1.041(11) 0.53340

24.670 10 0.8431(89) 0.54089

24.845 12 0.8540(81) 0.54816

25.050 12 0.6686(60) 0.55570

25.452 16 0.6396(55) 0.56866

Table 4: As in table 1 but for SU(6).

SU(8)

β L aml up

43.625 8 1.279(15) 0.51220

43.70 8 1.106(12) 0.51713

43.78 8 0.9989(94) 0.52094

43.85 8 0.9139(78) 0.52374

44.00 10 1.0599(91) 0.52879

44.35 10 0.8036(77) 0.53848

44.85 12 0.7222(61) 0.54980

45.70 16 0.6326(45) 0.56571

Table 5: As in table 1 but for SU(8).

SU(3) ; r0

β r0/a up

5.70 2.922(9) 0.54939

5.80 3.673(5) 0.56778

5.95 4.898(12) 0.58846

6.07 6.033(17) 0.60158

6.20 7.380(26) 0.61384

6.40 9.740(50) 0.63085

6.57 12.18(10) 0.64365

6.69 14.20(12) 0.65204

6.81 16.54(13) 0.65998

6.92 19.13(15) 0.66685

Table 6: The value of r0 [14], and the average plaquette, up, at the indicated values of β in SU(3).
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N a
√

σ ∈ √
σ/ΛI cσ χ2/ndf

2 [0.177,0.097] 4.566(28) 3.83(26) 1.8

3 [0.261,0.101] 4.888(17) 2.08(10) 1.1

4 [0.374,0.153] 5.005(20) 1.52(5) 1.0

6 [0.415,0.210] 5.131(25) 1.30(5) 0.34

8 [0.420,0.209] 5.199(21) 1.18(4) 0.27

Table 7: Results of weak-coupling fits using eq. (3.2) over the indicated ranges of a
√

σ and for

various N .

SU(8)

s a
√

σ ∈ √
σ/Λs cσ χ2/ndf ΛMS/

√
σ

latt [0.420,0.209] 96.80(47) 3.71(5) 0.37 0.3848(19)

up 1-loop [0.420,0.209] 8.980(43) 3.88(5) 0.54 0.2932(14)

up 2-loop [0.420,0.209] 6.832(43) 3.67(5) 0.38 0.3854(25)

up 3-loop [0.420,0.209] 6.100(28) 3.50(5) 0.32 0.4316(20)

up meas [0.420,0.209] 5.199(21) 1.18(4) 0.27 0.5064(21)

Table 8: Weak-coupling fit using eq. (3.2) to the whole weak-coupling branch in SU(8); for various

coupling schemes s.

3.2 Weak-coupling fits at all N

We begin by fitting the values of the SU(8) string tension that have been calculated on

the weak coupling branch in figure 2. We attempt to fit all the way to the point at which

the system tunnels through to the strong coupling phase. Although at lower β part of

this branch is metastable, the barrier to the strong coupling phase is so large that its

metastability is irrelevant. One can see this from the fact that the distribution of values of

the plaquette (averaged over the whole volume for a given gauge field) shows no sign of a tail

developing towards the very different values that it would take in the strong coupling phase.

Working in the mean-field improved coupling scheme s = I, we find that we can obtain

an excellent fit to all the values in table 5, using the O(a2), 3-loop truncation of eq. (2.3)

a
√

σ(a) =

√
σ(0)

ΛI

(

1 + cI
σa2σ

)

e
− 1

2β0g2
I

(

β1

β2
0

+
1

β0g2
I

)

β1
2β2

0 e
−

βI
2

2β2
0

g2
I
. (3.2)

The best fit is illustrated in figure 4 and the fitted values of
√

σ/ΛI and the constant

cI are given in table 7. We see that cI = 1.18± 0.04 is indeed O(1) as naively expected. In

fact any attempt to fit without a lattice correction, i.e. with cI = 0, fails very badly, even

if we include in our fit only the values of a
√

σ at the weakest couplings. Thus for N = 8

it is clear that the lattice spacing corrections are important and once taken into account

they allow a very good fit with the usual 3-loop perturbative running coupling. This turns

out to be equally true for SU(6), and we list the fitted parameters in table 7.
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√

σ

g2
I(a)N

0.50.40.30.20.10

6

5

4

Figure 4: The ’t Hooft coupling, defined from the mean-field improved lattice bare coupling,

eq. (2.6), as a function of the scale a in SU(8). Shown is the 3-loop perturbative running modified

by a O(a2) lattice correction.

Having established at these larger N that lattice spacing corrections are indeed needed,

we proceed to lower N using the same functional form as in eq. (3.2). For SU(4), where

the bulk transition has weakened to a relatively sharp cross-over [10], a good fit with

eq. (3.2) is still possible but only if we restrict ourselves to somewhat weaker couplings.

This is displayed in table 7 where we express the fitted range in terms of a
√

σ so as to

provide a common physical measure of comparison for different N . In SU(3) the bulk cross-

over becomes smoother and we have to move even further into weak coupling to obtain

an acceptable fit. This is illustrated in figure 5. Finally for SU(2) the bulk crossover is

smoother still and we find that even if we include only the values at weakest coupling,

we obtain an uncomfortably large χ2 per degree of freedom, as shown in table 7. All

this accords with the naive expectation that the smoother the strong-to-weak coupling

crossover, the further into weak-coupling one has to go before weak-coupling expansions

become applicable.

The computational cost of SU(N) lattice calculations grows roughly ∝ N3, and so our

SU(3) calculations extend to much smaller values of a than for SU(8). One might wonder
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Figure 5: The ’t Hooft coupling, defined from the mean-field improved lattice bare coupling,

eq. (2.6), as a function of the scale a in SU(3). Shown is the 3-loop perturbative running modified

by a O(a2) lattice correction.

if it is this greater range that makes the fit to SU(3) so much more difficult than for SU(8).

In fact this is not the case. If we fit the SU(3) values over a range of a
√

σ values that is very

similar to that of the whole SU(8) range, we obtain a statistically unacceptable χ2/ndf ∼ 8.

We can now take each value of
√

σ/ΛI in table 7 and transform the ratio to
√

σ/ΛMS

using eq. (2.9). If we then extrapolate to N = ∞ using the expected leading O(1/N2)

correction, we obtain a good fit for N ≥ 3, giving

ΛMS√
σ

= 0.503(2)(?) +
0.33(3)(?)

N2
; N ≥ 3. (3.3)

The final result for ΛMS is remarkably precise, but this appearance is quite misleading

since the quoted error is only statistical. The systematic errors, indicated by the ‘?’ in

eq. (3.3) are potentially very much larger. The most significant uncertainty, the choice of

coupling scheme, is what we address first. There are some further smaller systematic errors

(which are still much larger than the statistical errors) which will be discussed later on in

this section.
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SU(3): SF scheme

interp. p β ∈ 1/r0ΛSF cr dr χ2/ndf

latt 2 [6.257,6.9079] 3.245(24) 1.64(80) 1.05(26) 0.52

up 2-loop 2 [6.257,6.9079] 3.243(20) 1.61(64) 1.10(28) 0.54

up 3-loop 2 [6.257,6.9079] 3.238(23) 1.78(63) 1.10(28) 0.38

up meas 2 [6.257,6.9079] 3.212(27) 2.60(55) 1.13(28) 0.25

up 2-loop 1 [6.257,6.9079] 3.169(23) 1.63(44) 0.34(8) 0.45

up meas 1 [6.257,6.9079] 3.141(40) 2.21(58) 0.36(09) 0.18

up meas 2 [6.257,7.2611] 3.215(17) 2.64(45) 1.09(23) 0.28

Table 9: Weak coupling fits to r0 in SU(3) using the SF coupling scheme, as in eq. (3.5).

One might have hoped hope that the accuracy of our calculation of a
√

σ would prove

sufficient to usefully constrain what are the best coupling schemes to use. Unfortunately

this turns out not to be the case. To show this most graphically we consider three alterna-

tive schemes which all have the same scale Λs = ΛI . These are obtained by replacing the

value of the average plaquette up in eq. (2.6) by a truncation of its perturbative expansion

in eq. (2.7) to either O(g2), or O(g4), or O(g6). We label these schemes by s = I1, I2, I3

respectively; i.e.
1

g2
Ij

=
1

g2
L

(

1 − ω1g
2
L − · · · − ωjg

2j
L

)

(3.4)

using the notation of eq. (2.7). For j ≥ 1 these schemes are identical to the mean-field

scheme, s = I, to O(g2), so they will have exactly the same Λs parameter. We now take

eq. (3.2) and fit our SU(8) string tensions, replacing the values of g2
I by the corrsponding

values of g2
Ii

for i = 1, 2, 3. We obtain perfectly good fits in all cases as shown in table 8.

However, as we see there, the fitted values of
√

σ/ΛI vary by almost a factor of 2 between

these four coupling schemes. (For completeness we show the fit using the straightforward

lattice coupling scheme s = L, which, when translated to a value of
√

σ/ΛMS , is similar

to the fit in the I2 scheme.) We obtain very similar results for N = 6. Thus in the case

of larger N , where the presence of a first order bulk transition defines for us where a weak

coupling expansion should begin to be applicable, there is in practice no useful constraint on

the coupling scheme. At smaller N , where there are in fact marked differences in where one

can begin fitting with different schemes, the presence of a smooth strong-to-weak crossover

means that it is not clear what significance one should read into any particular comparison.

3.3 SU(3): choosing a scheme

The simplest way to determine if any given bare coupling scheme is ‘good’ is to compare it

against a running coupling that has been calculated on the lattice with enough statistical

and systematic precision to serve as a benchmark. A good example is the Schrodinger

Functional (SF) scheme of the Alpha Collaboration [27]. In [13] the SU(3) calculation [12]

has been extended so that it covers a range of energy scales comparable to that covered by

experimental measurements, but with much greater precision. (Compare figure4 of [13] with
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SU(3) :

s a/r0 ∈ 1/r0Λs cr χ2/ndf r0ΛMS r0
√

σ

latt [0.166,0.052] 53.26(21) 7.03(20) 1.26 0.5409(22) 1,143(11)

up 1-loop [0.103,0.052] 5.883(23) 10.65(30) 0.89 0.4475(18) 1.166(11)

up 2-loop [0.166,0.052] 4.891(20) 6.93(20) 1.28 0.5383(22) 1.156(14)

up 3-loop [0.204,0.052] 4.567(16) 5.87(13) 0.85 0.5765(20) 1.159(7)

up meas [0.204,0.052] 4.215(16) 3.00(13) 0.48 0.6246(24) 1.160(6)

Table 10: Weak coupling fits to r0 in SU(3) using the indicated coupling schemes, s, in appropriate

modifications of eq. (3.2).

figure10 of [11].) Its (continuum) running is well described by its 3-loop β-function [12, 13],

while the size of the non-universal β2 term is known to be modest [28, 13]. All this

encourages us to use it as our benchmark good coupling scheme.

The SF coupling is a coupling defined on a length scale la for a given a, where l can

take any integer value. (Restrictions arise in practice.) The values of β and l at which

calculations exist, with the corresponding values of g2
SF(al), are listed in tables 3 and 6

of [13]. Our strategy is to take some physical quantity µ that has been calculated over

a large range of lattice couplings, interpolate from the values of β at which it has been

calculated to the values of β at which g2
SF(al) has been calculated for some l, and then

fit these values using a 3-loop perturbative expression, modified by the expected lattice

corrections, to obtain µ/ΛSF. (Note that in contrast to extrapolation, interpolation does

not generate significant systematic errors.) We then fit these same values of µ using eq. (3.2)

with various improved lattice coupling schemes to obtain alternative estimates of µ/Λs and

hence of µ/ΛSF. If the latter is consistent with the value obtained using g2
SF(al), we have

evidence that the corresponding ‘improvement’ is indeed a ‘good’ one.

Our string tension calculations in table 2 do not have enough overlap in β with the

g2
SF(la) calculations to be useful for this purpose. (Within the relevant range β ≤ 6.515,

values of g2
SF have been calculated at only two values of β.) Instead we turn to the r0

calculations in table 6 which do have a useful overlap. We fit using

la

r0(a)
=

1

r0ΛSF

(

1 + cSF
r

a2

r2
0

+ dSF
r

1

lp

)

×e
− 1

2β0g2
SF

(la)

(

β1

β2
0

+
1

β0g
2
SF(la)

)

β1
2β2

0 e
−

βSF
2

2β2
0

g2
SF(la)

. (3.5)

Here there are two lattice spacing corrections. The usual O(a2) term arises from corrections

to r0(a) etc. while the O(1/lp) term arises from lattice corrections to g2
SF(la) on the scale

l×a. As indicated in [12, 13] one expects the leading correction for the SF scheme to have

p = 1. However the fact that the coupling is Symanzik-improved means that the dominant

correction in our range of a might in fact have p = 2 [12, 13]. We shall use fits with both

values of p taking the difference as part of our estimate of the systematic error. We expect
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(as usual) that cr ∼ O(1) but we anticipate that dr will be small given that very small

scaling violations are seen in the step-scaling function in [12, 13].)

To obtain as strongly constrained a fit as possible, we want to maximise the number

of values of the running coupling that we fit in the range β ∈ [5.70, 6.92] where we have

calculations of a/r0. We therefore use not only the values of g2
SF(la) and g2

SF(2la) in table

3 of [13] but also the values of g2
SF(la) listed in table 6 therein. (We exclude the last 4 rows

of table 6 since they use a different improvement.) We list in table 9 the results of our

various fits. We show separately the results of using different interpolations in obtaining

a/r0. As expected we find that this makes a negligible difference. We show fits for powers

p = 1 and p = 2 and see that this makes a small ∼ 2% difference. Finally we give an

example of a fit that uses values in the additional range β ∈ [6.92, 7.26] where we obtain

the values of a/r0 by the less reliable process of extrapolation. Again there is only a small

change in the fit.

We note that the region of couplings β ∈ [6.22, 6.91] that we actually use in our fit,

corresponds to the range of scales

µ

ΛSF
=

1

aΛSF
=

1

r0ΛSF
× r0

a
∈ [23.9, 58.6]. (3.6)

If we look at figure4 in [13] we see that in this range, the 3-loop formula we use already

appears to provide a very good approximation to the continuum β-function. The lattice

spacing corrections are less well determined but by taking the range of results spanned by

both the p = 1 and the p = 2 fits, our estimate of this systematic error should be credible.

Putting all this together we obtain

1

r0ΛSF
= 3.2(1) −→ r0ΛMS = 0.640(20) (3.7)

using ΛSF ≃ 0.48811ΛMS [12]. If we now compare this with the values in table 10 that have

been obtained by fitting r0/a using eq. (3.2) with various bare coupling schemes, we see

that the Mean-Field scheme produces values that are consistent. It is therefore plausible to

adopt the latter as our ‘good’ scheme, while incorporating a systematic error ∼ 6% based

on the difference between the value in table 10 and the value ∼ 0.66 that one gets at one

standard deviation in eq. (3.7).

As a by-product of these calculations we also obtain an updated value for the relation-

ship between the two standard scales r0 and
√

σ:

r0
√

σ = 1.160(6)(6) : SU(3). (3.8)

The first error is statistical and the second is systematic. It includes a ∼ 0.5% error

on the value of σ and a ∼ 0.2% error from O(a4) corrections. (See section 3.5.) We

cannot estimate, and therefore neglect, any systematic error on r0. Note that there are

no perturbative uncertainties here, as we see from the similarity of the various estimates

of r0
√

σ in table 10. What we are doing is equivalent to interpolating a/r0 and a
√

σ to

common values of β, taking the ratio, and performing a continuum extrapolation with

conventional lattice corrections. This process is insensitive to the precise interpolation as

long as it is smooth.
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3.4 Comparing schemes directly

Here we introduce a method for comparing different coupling schemes directly, without the

use of any physical quantity such as r0/a or a
√

σ. This has the great advantage that it

allows us to perform comparisons much deeper into weak coupling.

For a scheme s define the 3-loop perturbative factor

F s
3 [g2

s ] = e
−

1

2β0g2
s

(

β1

β2
0

+
1

β0g2
s

)

β1
2β2

0 e
−

βs
2

2β2
0

g2
s
. (3.9)

Now we expect for the SF scheme

laΛSF ≃
{

1 +
c1

lp

}

F SF
3 [g2

SF(al)] (3.10)

and for a ‘good’ improved scheme I ′ based on the bare lattice coupling

aΛI′ ≃
{

1 + c′a2
}

F I′

3 [g2
I′(a)], (3.11)

up to the various higher order corrections. If we now replace the a2 on the r.h.s. of eq. (3.11)

by the expression for a in eq. (3.10), and if we then take the ratio of the two equations, we

obtain
ΛSF

ΛI′
≃ c0 =

1

l

F SF
3 [g2

SF(al)]

F I
3 [g2

I′(a)]

{

1 + c1
lp

}

{

1 + c2
1
l2

{

1 + c1
lp

}2 {F SF
3 [g2

SF(al)]}2
} (3.12)

where c2 = c′/Λ2
SF. We can now perform a fit for the constants c0, c1 and c2 over ranges

of β further and further into weak coupling, and see how rapidly c0 approaches the known

value of ΛSF/ΛI′ . The more rapidly it does so, the ‘better’ we may judge the coupling

scheme to be.

Before proceeding, some remarks. We do not expect exact agreement between the fitted

and known values of ΛSF/ΛI′ because we are missing the 4-loop and higher contributions

to the β-function. Indeed it is precisely the discrepancy that will tell us how ‘good’ is our

I ′ scheme. In addition, over the wider range of g2(a) values that becomes accessible with

this method, we may well need to worry about the fact that our supposed constants, c1 and

c2, are in fact power series in g2. These, and other issues that arise in such a calculation,

we shall ignore, with the caution that one should therefore regard our calculation as being

less than fully quantitative. On the other hand, we note that the O(a2) corrections to

eqs. (3.10), (3.11) are in fact negligible in such a comparison except at the very smallest

values of β, thus largely eliminating one source of systematic error.

We have grouped the calculated values of g2
SF by the ranges of β within which they

have been calculated, and we have fitted each such group of values separately. Each group

has ∼ 10 values of g2
SF which is more than enough to constrain the three parameters in the

fit. We can thus see how the fitted value of c0 compares to the ratio of the Λ parameters as

we go further into weak coupling. We do so separately for the mean-field coupling, I ′ = I,

for the variation I ′ = I3 where the plaquette is replaced by its 3-loop approximation, and

finally for the lattice bare coupling, I ′ = L. We choose to take a power p = 2 although in

practice we get much the same picture with p = 1.
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Figure 6: Calculated values of R = c0/(ΛSF/ΛI′), where c0 comes from the fit in eq. (3.12). For

the I ′ = I, •, I ′ = I3, ◦, and the I ′ = L, ×, lattice coupling schemes.

The results of our fits are shown in figure 6. We plot there the ratio of c0 to its

asymptotic value, i.e. ΛSF/ΛI for schemes I and I3, and ΛSF/ΛL for the lattice scheme.

We see quite clearly that Parisi’s original mean-field scheme, using the full plaquette in

the improvement, is consistent with converging remarkably quickly to the expected value

(with a small deviation that is consistent with a slowly decreasing 4-loop term). If the SF

coupling is ‘good’, then so, it would appear, is the mean-field scheme. The other schemes

considered fare much less well by this criterion.

A final aside. We have emphasised that the SF coupling possesses various desirable

properties — it has been calculated over a very large range of scales, it is very precise, it

has modest higher order perturbative corrections (as indicated by the results of [12, 13]).

All this makes it an attractive benchmark coupling. However we also recall that g2
SF(l) is

defined on a l4 torus. Now, it is known that SU(N = ∞) gauge theories suffer a sequence

of phase transitions as l → 0 (see [31] and references therein). Each of these transitions

involves the breaking of a ZN symmetry in one of the space-time directions. The first

transition is the usual deconfining transition and the remaining ones can be interpreted

as continuations of deconfining transitions on ever more dimensionally reduced space-time

– 19 –



J
H
E
P
0
7
(
2
0
0
8
)
0
2
1

volumes [32]. At finite N these phase transitions will become cross-overs. Such cross-overs

will, in general, contribute non-perturbatively to the running of g2
SF(l). Although one might

argue that such contributions will be negligible at the level of accuracy we are aiming for

here, this needs to be checked and, in any case, this raises interesting issues (in its own

right) which need to be addressed.

3.5 Other systematic errors

There are a number of other, relatively straightforward, systematic errors that we now

address. These include errors from neglecting higher order corrections in 1/l in eq. (3.1)

when extracting a2σ from the loop masses, and also errors in the actual calculation of

these loop masses. There is the error due to the neglect of higher order corrections in

a2 in eq. (3.2). Then there is an error in using only a leading O(1/N2) correction in

eq. (3.3). Finally there are the errors arising from our ignorance of higher order perturbative

corrections in eq. (3.2), within the mean-field improved coupling scheme. Assuming this

to be a ‘good’ scheme, as argued above, these last corrections can be plausibly bounded.

We can obtain an estimate of the magnitude of the correction to eq. (3.1) from the

calculation in [26]. One finds that for SU(6), and SU(4), the extra correction can be fitted

by a term that one can rewrite as −1.23(21)/a2σL3. For our lattices a2σL2 ∼ 10, so this

corresponds to a ∼ 10% addition to the bosonic string correction, and hence a ∼ 0.5%

increase in the final estimate of a
√

σ. This provides us with an estimate of our systematic

error from this source.

We extract the loop masses by identifying effective mass plateaux in appropriate cor-

relators obtained from a variational calculation. In practice the best variational ground

state has an overlap of ∼ 99% onto the true ground state so any error should be very

small. In the technically very similar case of D = 2 + 1 that was analysed in [29], the shift

in the extracted value of a
√

σ induced by excited string states was shown to be less than

0.5%. We can take this as a bound on the corresponding systematic error in the present

calculation. Note that this error will decrease the string tension and will therefore partially

cancel against the error discussed in the previous paragraph.

The fitted values of
√

σ/ΛI turn out to be very robust against the inclusion of additional

O(a4) corrections in eq. (3.2), with shifts that are typically ∼ 0.25%.

The perturbative expression in eq. (3.2) is missing an extra factor ∼
(

1 +
∑

dng2n
)

that arises from the unknown higher order perturbative corrections. (Ignoring compli-

cations that arise from the - at best - asymptotic nature of the expansion.) One might

imagine that the simplest way to proceed is to try and fit the first couple of terms in

this series. This turns out not to work. The reason is that over our range of scales, the

coupling g2(a) varies very little; thus the correction term is to first approximation just a

constant
(

1 +
∑

dng2n
)

∼
(

1 +
∑

dng2n
)

which renormalises the fitted value of the over-

all constant coefficient
√

σ/ΛI . For example, if we remove from our fit the 3-loop factor

exp{−βI
2g2

I/2β
2
0} in eq. (3.2) we find that we still get a perfectly good fit, but with a value

for
√

σ/ΛI that is increased by a factor ∼ 1.14. Now if we use, say, the value g2
IN ≃ 5.36

that we get at β = 44.35 in table 5, we find that exp{−βs
2g

2
I/2β

2
0} ∼ 1.17 which is numer-
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ically similar. What this means is that neglecting higher order perturbative corrections

effectively shifts
√

σ/ΛI away from its true value. In the example above, neglecting the

3-loop contribution induces a systematic error in the evaluation of
√

σ/ΛI that is roughly

15%. If we have a well-behaved coupling scheme, one might hope that the error due to

the neglect of 4-loop and higher order corrections will be roughly the square of this, i.e.

∼ 2− 3%. In fact if we estimate, in the above way, the shift induced by the O(g4) term in

eq. (2.3) in the MS scheme, where the necessary 4-loop calculation has been performed [20],

we find a shift of this magnitude. Assuming that our mean-field improved scheme is also a

good one, it then seems safe to bound the systematic error from this source by ∼ ±4%.

While our 2-loop expression in eq. (3.2) is exact, the 3-loop expression is kept only to

leading order in g2. This makes perfect sense since at higher orders in g2 one obtains the

unknown contributions from higher loops discussed above. Nonetheless we have checked

the difference it makes to our fits and extrapolations if we do employ an exact 3-loop

expression (by using an expansion to much higher order in g2) and what we find is that

the shift in calculated quantities is only at the ∼ 0.5% level for both the SF and mean-field

coupling schemes.

Finally, we find that the inclusion of an additional O(1/N4) correction in the large-N

extrapolation in eq. (3.3) leads to a shift of no more than ∼ 0.5%.

Note that all the systematic errors we discuss will to a first approximation be inde-

pendent of N and should therefore not affect the quality of the large-N extrapolation, but

will merely add extra uncertainties to the fitted values.

We thus estimate a reasonable bound on the systematic error from these sources to be

±5%. Adding (in quadrature) the ∼ 6% systematic error coming from the choice of scheme

(as estimated in section 3.3) we shall take ±8% as our total systematic error.

4. Conclusions

As a by-product of the calculations in section 3.3 we obtained an updated value for the

relationship between the two standard scales r0 and
√

σ in the continuum limit: r0
√

σ =

1.160(6)(6) where the first error is statistical and the second is systematic.

One of the main purposes of our calculation was to determine the importance of lattice

corrections in the relationship between g2(a) and the lattice spacing a, where g2(a) is the

bare lattice coupling, or some improvement thereof. The novelty of our approach is to

do so for SU(6) and SU(8), where the first-order strong-to-weak coupling transition gives

unambiguous guidance as to where a weak-coupling fit should be applicable. By contrast,

in SU(3) the presence of a smooth strong-to-weak coupling cross-over makes it difficult to

evaluate the apparent success or failure of different weak-coupling fits.

We found that, at larger N , the variation of a
√

σ with g2(a) did indeed demand the

presence of an O(a2) correction to the 3-loop perturbative running, and that its coefficient is

O(1)×σ as one would naively expect. Indeed, such a fit accurately describes the running of

g2(a) along the whole weak-coupling branch, including the metastable portion that extends

well beyond the location of the bulk transition.
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Figure 7: Calculated values of ΛMS/
√

σ versus 1/N2 with a linear extrapolation to N = ∞ shown.

As we go to lower N , we find that we need to go deeper into weak-coupling before such

weak coupling fits start working. Indeed for SU(2), it is not clear if there is a significant

such region below β = 2.70 (the weakest coupling at which we have a calculation of a2σ).

An interesting question concerns the functional form in the extended cross-over region

where the strong coupling expansion gradually transforms into a weak-coupling one. As

we discussed in section 2, a good place to begin such an analysis is in the D = 1 + 1 case

where analytic arguments are possible [30].

Having a well-motivated lattice correction [9] to the running coupling, invites us to

address the more ambitious goal of calculating ΛMS/
√

σ for various N , so as to interpolate

and extrapolate to all N , including N = ∞. However in the range of scales a
√

σ where

calculations exist, different perturbative schemes give quite different results. This well-

known problem is usually addressed by ‘improving’ the lattice bare coupling. However this

turns not to be sufficient. Even if we use variations on the improvement that leave the Λ

parameter unchanged, one can easily have a factor of two variation in the fitted ΛMS/
√

σ,

as we saw with the otherwise well-motivated mean-field improved coupling. Unfortunately

our large-N calculations turn out not to be able to discriminate between these different
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coupling schemes — typically they all work almost equally well as fits. To finesse this

impasse, we turned to SU(3) and compared a number of variations on the mean-field

scheme with the Schrodinger functional (SF) scheme [13] which has been calculated over

a range of energy scales comparable to that of experimental determinations of αs(Q
2) and

with greater precision. Applied to calculated values of r0 this comparison indicated that

the original Parisi mean-field scheme works well. Using this scheme for all our values of

N , we obtain the fit to all N ≥ 3 shown in figure 7:

ΛMS√
σ

= 0.503(2)(40) +
0.33(3)(3)

N2
; N ≥ 3 (4.1)

where the first error is statistical and the second much larger error is expected to provide

a bound on the systematic error from all sources. (A fit including the N = 2 value is

not statistically excluded, but we prefer not to include it given the marginal nature of the

SU(2) calculation.) Note that the component systematic errors are independent of N to

a first approximation, and we can therefore include that error as a common factor to the

best fit in eq. (4.1).

We also presented a way of comparing different coupling schemes that does not depend

on the explicit calculation of any physical quantities. This means that one can perform

the comparison much deeper into weak coupling. Here again we found evidence that the

mean-field improved coupling is a ‘good’ one in the sense of possessing small higher order

corrections.

Our calculations have, of course, have been limited to a small set of improved lattice

couplings. There will certainly be other ‘good’ lattice couplings, and the methods described

in this paper can help to identify them. We have also focussed on one particular lattice

action (albeit the one that has been most widely used); however it is straightforward to

construct a Mean-Field improved coupling for other actions, in the spirit of [7].
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M. Lüscher and P. Weisz, Quark confinement and the bosonic string, JHEP 07 (2002) 049

[hep-lat/0207003].

[26] H. Meyer and M. Teper, Confinement and the effective string theory in SU(N → ∞): a

lattice study, JHEP 12 (2004) 031 [hep-lat/0411039].

[27] M. Lüscher, R. Narayanan, P. Weisz and U. Wolff, The Schrödinger functional: a

renormalizable probe for nonabelian gauge theories, Nucl. Phys. B 384 (1992) 168

[hep-lat/9207009];
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